PHYSICAL REVIEW E 71, 036205(2005

Enhanced tracer transport by the spiral defect chaos state of a convecting fluid
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To understand how spatiotemporal chaos may modify material transport, we use direct numerical simula-
tions of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the
transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the
transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity
follows two regimes. For large Péclet numbétsat is, small molecular diffusivities of the tragewe find that
the enhancement is proportional to the Péclet number. For small Péclet numbers, the enhancement is propor-
tional to the square root of the Péclet number. We explain the presence of these two regimes in terms of how
the local transport depends on the local wave numbers of the convection rolls. For large Péclet numbers, we
further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the
local wave vector but suppressed in the direction of the local wave vector.
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[. INTRODUCTION scales as the square root of the Péclet nurpdefined in Eq.
(14) to be the ratio of the strength of advection to diffugion
This paper addresses the transport of passive neutralj]. This enhancement, in the large Péclet number limit, has
buoyant tracers in Rayleigh-Bénard convection exhibitingalso been calculated theoretically by using the matched
spiral defect chaos—an example of spatiotemporal chaos thasymptotic expansion meth¢#,6]. In addition, higher-order
is characterized by disorder in both space and filne]. An corrections to the diffusion process, for arbitrary Péclet num-
important characteristic of such spatially disordered flows isers, have been calculated numerically using the homogeni-
that fluctuations in space play a significant role in their dy-zation method[7,8]. For nearly two-dimensional time-
namics, resulting in advection of the passive tracers that igeriodic convection, experiments near the onset of the
dependent in a complex fashion on space and time. Th@scillatory instability[9] have shown that the transport is
transport of passive tracers in such disordered flows is thefdain effectively diffusive but with an effective diffusivity
governed by this advection in addition to molecular diffu- that depends linearly on the local amplitude of the roll oscil-
sion. The goal of this paper is to understand the net averad@!ions[10]. This result has also been confirmed in theoreti-
transport of passive tracers as a function of the two compe cal work, which also identified the invariant structures of the
ing mechanisms of advection by spatiotemporal chaos an w that acted as templates for the motion of the tracers

molecular diffusion. Understanding material transport by tr11e1r2t Peassil;lﬁot/rvascesru::rr?n;sng nl(’:? a\:\/s:vg;egnz‘fgfg bm
spatiotemporal chaos is a problem that is of considerabl yp : pirary g y

. . . . .~ the Faraday instabilit13,14] and a chain of corotating vor-
importance in many branches of science and engineering;

. . ‘ces in a rotating annuludl5,16.
For example, an improved understanding may allow one to 9 u .

in insiaht h q : heri In this paper, the above transport studies are extended to
gain insight into heat and mass transport in atmospheric angl, s 1hat exhibit spatiotemporal chaos. It will be shown that
oceanic flows and also in chemical engineering processgg

h busti e transport is globally diffusive and is enhanced by the
such as combustion. . ) .Spatiotemporal chaos. However, unlike the case of laminar

Previous Studies of the properties of passive transport "?ows, the enhancement is found to follow two regimes. For

con\;(elctwe'”flows haye focused onlyl on the ds_teady' anlarge Péclet numbeifshat is, small molecular diffusivities of

weakly oscillatory regimes. For example, in two-dimensionaly, o tacey. the enhancement is proportional to the Péclet
tlme-l_ndependent laminar Rayleigh-Benard _convect!on ﬂO\_Nnumber, whereas for small Péclet numbers, the enhancement
eXPe“f.“e“ts have_shov_vn_tha’F the transp(_)rt IS effe.cfuvely d'f'ls proportional to the square root of the Péclet number. These

fusive in the long time limit, with an effective diffusivity that q regimes are then explained by analyzing how the local
is greater than the molecular diffusivity by a factor thattransport depends on the local wave numbers of the convec-

tion rolls.

The remainder of this paper is organized as follows. In

*Electronic address: ChiamKH@MailAPS.ORG; URL: http:// Sec. Il, the equations governing Rayleigh-Bénard convection
www.cmp.caltech.eddktchaos and the transport of passive tracers are defined. In addition,
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shows a numerically simulated instance of the spiral defect
chaos state in a cylindrical geometry. More generally, spiral

defect chaos is an example of a kind of widely observed

phenomenon called spatiotemporal chaos that exhibits disor-
der in space and chaos in time.

The evolution of the convecting fluid is governed to a
good approximation by the three-dimensional Boussinesq
equationg17]. They are the combination of the incompress-
ible Navier-Stokes and heat equations, with the further as-
sumption that density variations are proportional to tempera-
ture variations and that this density variation appears only in
the buoyancy force. Written in a dimensionless form, they
are

o Yo +u- V)uxyzt)=- Vp+Vu+RTz (1)
(G +u- V)T(xy,zt) = VT, (2)

V-u=0. (3

The fieldu(x,y,z,t) is the velocity field at pointx,y,z) at

timet, while p andT are the pressure and temperature fields,
FIG. 1. Example of spiral defect chaos observed in a numericaf€SPectively. The variablesandy denote the horizontal co-

simulation described in Sec. Il C with insulating and no-slip bound-Ordinates, while the Va['ab|E denotes the vertical coordi-

aries, and with a spatial resolution Ak=1/8 and a temporal reso-  nate, with the unit vectoz pointing in the direction opposite

lution of At=10"3. The mid-plane temperature field is plotted at t0 the gravitational acceleration. The spatial units are mea-

time t=500 for parameters=1.0, c=1, and in a cylindrical geom- sured in units of the cell dept, and time is measured in

etry of aspect ratid”=30. Dark regions correspond to cold sinking units of the vertical thermal diffusion timé?/ «, wherex is

fluid, light regions to hot rising fluid. The spiral defect chaos plan-the thermal diffusivity of the fluid. The parametBris the

form is characterized by a disordered collection of spirals rotatingRayleigh number, a dimensionless measure of the tempera-

in both directions and coexisting with dynamical defects such agure differenceAT across the top and bottom plates,

grain boundaries and dislocations.

o
R=29% AT, (4)
direct numerical simulations of these equations are dis- VK
cussed. In Sec. lll, results_ from these simulations are preghereq is the thermal expansion coefficietis the thermal
sented. In Sec. IV, conclusions are presented. diffusivity, and v is the viscous diffusivitykinematic viscos-
ity) of the fluid. In this paper, the reduced Rayleigh number
Il. EQUATIONS AND ALGORITHMS will also be frequently used,
A. Rayleigh-Bénard convection €= R-R; (5)
In a typical Rayleigh-Bénard convection experiment, an Re

incompressible fluid layer is confined between two horizonhereR,~ 1708 is the critical Rayleigh number at the onset
tal plates, and is thermally driven far from equilibrium by of convection in an infinite domaifL7]. The parametes is
maintaining the bottom plate at a temperature that is highefhe Prandtl number, defined to be the ratio of the fluid's
than that of the top plate. As the temperature difference ishermal to viscous diffusivities,

increased, the fluid undergoes an instability to a state in
which there is motion driven by the buoyancy forces. When
the temperature difference between the plates is above but
near this convective threshold, a pattern comprising patches
of locally parallel convection rolls forms with roll diameters
that are close to the depth of the cell. When the temperatu
difference is increased, the fluid undergoes other instabilities u =0 on all material walls. (7)

that may result in the pattern developing an oscillatory or

chaotic time dependence. Finally, when the temperature diffhe temperature field is constant on the top and bottom
ference is increased further and if the aspect rhtis larger ~ Plates,

than about 20 in boxes and 30 in cylinders, spiral defect T(xy,z= T 1=+l ®)
chaos appears. This state is a disordered collection of spirals e 2’ e

that rotate in both directions and coexist with dynamical de-The lateral walls are assumed to be perfectly insulating, so
fects such as grain boundaries and dislocations. Figure that

(6)

g=".
K

The material walls are no-slip so that the velocity field
raatisfies
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i - VT=0 on lateral walls, (9) the relative importance of the advection of the tracers to their

A . ) molecular diffusion,
wheren is the unit vector perpendicular to the lateral walls at
lul

a given point. The pressure fiefilhas no associated bound- = Ul (14)
ary condition because it does not satisfy a dynamical equa- T
tion.

The influence of the lateral walls on the dynamics is de{Note that the numerator in E¢L4) contains a characteristic
termined by the dimensionless aspect rdtjcdefined to be length scale—the depth of the cell—which is unity and is
the half-width-to-depth ratio of the cell if it is rectangular thus omitted|

and the radius-to-depth ratio if it is cylindrical. Finally, it should also be noted that instead of studying the
_ passive tracer concentration fiefdin the space coordinates
B. Transport equation defined in the laboratory framighe Eulerian approaghone

The transport of passive neutrally buoyant tracers in &ould study the trajectories of each passive tracer individu-
flow can be described by the advection-diffusion equation@lly (the Lagrangian approaghy integrating, for each pas-
Written in a dimensionless form, it is sive tracer,

(G+u- V)xy,zt) = LV (10 dz_(tt) =u(x(),1) + (1), (15)
The scalar fieldi(x,y,z,t) is the passive tracer concentration
at point(x,y,z) and timet. The velocity fieldu is obtained ~ Wwherex(t) is the position of the tracdinitially at x(0)], u is
by solving the Boussinesq equations, E@8—3). The pa- the Eulerian velocity field at spacgt) and timet, and»(t) is
rameter, is the Lewis number, which is the dimensionlessa Langevin noise introduced to represent molecular diffu-
ratio of the molecular diffusivityD of the tracers to the ther- sion. However, this approach is not pursued here because of

mal diffusivity « of the fluid, the difficulties associated with integrating E45). In fact,
even if the velocity fieldu can be explicitly determined and
= 9_ (11 has a very simple form, the tracer trajectoriesan have
K very complicated dynamidsl8].

(Other conventions of making dimensionless exist, such as
dividing it by the viscous diffusivity of the fluid, in which
case the dimensionless number becomes the Schmidt numberwe use a parallel spectral element scheme to integrate the
D/v.) In this paper, small Lewis numbers in the range®.0 Boussinesq equations, Eq4)—~3), and the transport equa-
<L£=<10" will be considered. In comparison, the Lewis tion, Eq.(10). The scheme is second-order-accurate in time
numbers of passive tracers used in previous convection exnd is designed for rectangular, cylindrical, as well as more
periments[4] in water at approximately 300 K, namely, complex geometries with arbitrary lateral boundary condi-
micrometer-sized latex spher@anyl toluenet-butylstyren¢  tions. Details of this scheme are available elsewH&@.
and methylene blue dye, aré=1.2x10° and £=3.9 For applications of this scheme to related problems in
X 1073, respectively. Rayleigh-Bénard convection, see Rdf20-24.

The tracers are assumed to be passive, that is, their mo- For small Lewis numberg <1, one well-known diffi-
tions in the fluid do not modify the fluid’s velocity field. The culty [25,26 associated with integrating E¢LO) is that the
fluid is also assumed to have negligible Soret and Dufougpatial resolutior\x has to be very small. This scale is set by
effects. The former refers to the additional passive tracethe smallest scale in the tracer concentration field, such as
concentration current driven by gradients of the temperaturehe thickness of the interface where the tracer is initially zero
field, whereas the latter refers to the additional heat currenén one side and unity on the other. The interface is then
driven by gradients of the passive tracer concentration. Itretched by a strain ra@~ du/ 9x~ ||u||, and its thickness is
addition, the lateral walls are assumed to be impermeable tgroportional to(£/S)Y?, that is,
the tracers, so that

L 1/2
A - V =0 on lateral walls, (12) Ax ~ (m> =p 12 (16)
wheren is the unit vector perpendicular to the lateral walls at

agiven point. o . . velocity magnitudel|ul|, is about 10. Thus, a simulation at
Equation(10) is also commonly written in the literature in the Lewis number of, say; =10 will require Ax~ 1072 in

an alternate but entirely equivalent form. By dividing it . .
throughout by the product of a characteristic velocity scaleOrOIer to sapsfy Eq(16). However, current computational
llul| and a characteristic length scale, E40) becomes resources dictate thaix be about=10"%, and in fact, for the
' results quoted in this papekx=1/8. This problem is over-
- 1_, come by using a filtering procedure developed by Fischer
(G+U- V)gixy,zt) = 7_;V b, (13 and Mullen[27], and is described in Appendix I. Using this
filter and maintainingAx=1/8, aLewis number as small as
with T the rescaled timd] the rescaled velocity field, arfl £=107 can be attained in a stable simulation. The accuracy

the Péclet number, defined to be the dimensionless ratio aff using the filter is also discussed in the Appendix.

C. Direct numerical simulations

For the spiral defect chaos states considered in this paper, the
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(b) t=10 x107 field ¢(x,y,t) at the midplanez=0 for the parameterf
=3500,0=1, and£=10"2is shown for various times The
0.03 8 . ; N
g passive tracer concentration spreads outward with time in a
0.02 nonuniform and nonaxisymmetric way. In Sec. Il A, this
0.01 4 spreading is quantified globally by studying the mean-square
’ 2 displacement of the passive tracer concentration field. In Sec.
0 Il B, this spreading is shown to be characterized by normal
(b) t=20 x107 x107™ diffusion. In Sec. Il C, the local dependence of the spread-
> 8 ing on the local wave number is discussed.
6
1 4 A. Statistics of moments of passive tracer concentration
2 The spreading of the passive tracers can be quantified by
0 0 its mean-square displacemévi(t), or the second moment,
(b) t=60 x10*  (b) t=80 X107 of the passive tracer concentration field,
3 I r2m
4 . f f X = (X)(t)|?e(r, 6,)r dr d @
0 J0
2 9 M2(t) = T r2m (18)
J Y(r,6,tyrdrde
0 0 0 Jo

FIG. 2. Evolution of the passive tracer concentration field Here,x=(r,#) is the polar coordinate with origin at the cen-
¥(x,y,z=0,1) for various timed, obtained by numerically solving ter of the cell. In practiceM,(t) is computed as the average
Eq. (10). The Rayleigh numbeR=3500, the Prandtl number=1,  over different instance@ypically three to fivg of ¢ obtained
and the Lewis numbeL=10", and the cylindrical cell has the from different random initial conditions of spiral defect
aspect ratid'=30. The initial condition fory att=0 is given by Eq. chaos, that is, the velocity, temperature, and pressure fields
(.17). The vertical bars depict the intensity scale of the concentration;sed att=0 are different instances of fully developed spiral
fields. defect chaos. The quantitx)(t) is the instantaneous center

of mass of the tracer distribution,

Il. RESULTS
' r27
The transport equation, E¢L0), was integrated concur- Xi(r,6,0)r drdé
rently with the Boussinesq equations, E¢H—(3), for the (00 = 0Jo (19)
following parameters: the Rayleigh number varied from the T (T r2m
onset of spiral defect chaos Rt=3000 to fully developed f r,6,0)rdrdo
0oJo

spiral defect chaos &=~ 4000, the Prandtl number=1, and
the Lewis number ranging fron£=10"° to £=10"". The In Fig. 3, the mean-square displacem&hi(t) is plotted

direct numerical simulations have been performed in cylin{g, several different values of the Rayleigh numBeand the
drical three-dimensional cells of various aspect ratios. In thig ewis numbersz=10"3 and £=10"2. It is found that, in all

paper, data for an aspect ratiolof 30 will be reported. The  cases, the mean-square displacenidatt) is directly pro-

initial condition used for the passive tracer concentratiorbortiona| to the timet to a very good approximation. Least-
field is a localized concentration at the center of the cell, squares fits oM,(t) to power laws~t” yield exponentsy of

NNy I approximately unity, as shown in Table I.
(x,y,z,t=0) = exp[— y—z} (17) This implies that the spreading of the passive tracer con-
6A centration field can be described by a normal diffusive pro-

with A=1/4 asmall constant to ensure that the passive trace?ess' In other words, the ave_raged passive trac_er conpentra-
concentration is initially localized. At time=0, the tempera- 1O, #(r,t), evolves according to the one-dimensional
ture, velocity, and pressure fields correspond to arormal diffusion equation,

asymptotic state of spiral defect chaos, that is, one that has ~ .~

been evolved from random thermal perturbations up to a aPr, ) =L ip (20)

. > . .
time of OI). ".1 this paper, the focus will be_ on cells of with £" an effective Lewis number that can be extracted
large aspect ratiol’=20. For these aspect ratios, thele- :

faom the mean-square displacement as

pendence of the passive tracer concentration field was foun
to be essentially constant. As such, theependence will be M,(t) = 4C°t. (21)
dropped in subsequent discussions and the passive tracer
concentrationy(x,y,t) will be considered as a function of Several values of the effective Lewis number for various
two-dimensional horizontal space and time. values of the parameters are tabulated in Table II.

In Fig. 2, the evolution of the passive tracer concentration The quantity
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o[ ' ) 3 TABLE Il. The effective Lewis number* computed from Eq.
“ "”’M (22) for various values of the Rayleigh numbRBrand the Lewis
N e numberZ.
2 T
Ii -7 o
o A L 1073 1072 101
10° 12 . . R
10° 10’ 10° 3074 0.29 0.29 0.38
. It : 3500 0.35 0.35 0.50
) 4270 0.42 0.41 0.53
8 o —em T —M
S ---=""" oa oA ; .
A T o A large Péclet number§=10?, the enhancement is found to
A scale linearly with the Péclet number,
0[O
10" = ' 3 A 24
10° 10' 10? P. (24)

This implies that the effective Lewis number also scales lin-

FIG. 3. The mean-square displacemevis(t) of the passive €arly with the velocity magnitude of the flow, and is inde-
tracer concentration field for two different Rayleigh numb&s Pendent of the Lewis numbet,
=3074(top) and 3500bottom). The Prandtl number is=1 in both - [ ||u|| (25)
cases. The triangle and circle symbols denote data for the Lewis '

number£=10"° and £=10"?, respectively. The dashed lines have [Equation(25) is easily obtained by dividing Eq24) by the
slopes of gnity._The exponents obtained from power-law fits of the a\uis numberZ.] In addition, it is of interest to see how the
data are given in Table I. effective Lewis number relates to the reduced Rayleigh num-

ber. This relation is plotted in Fig. 5, and it exhibits a square-
L-L root dependence,

(22)

L*= Lo« el (26)

is then a dimensionless measure of the enhancement in thgys, Eqs(25) and(26) together suggest that the character-

molecular diffusivity of the passive tracer concentrationistic velocity scale of spiral defect chaos scales with the re-
brought upon by the advection of the spiral defect chaotiqyyced Rayleigh number as

flow. The goal of this paper can then be phrased as the cal-
culation of how this enhancement varies as a function of Jul o= 2. (27)
both the properties of the advecting flyithie Rayleigh num-

berR and Prandtl numbes) and the property of the passive ¢

tracer concentratiofits Lewis number, or equivalently, the ﬁ 2?238
Péclet numberP, cf. Eq. (14)], 0 R-4270 ,§’
A=A(R0,P). (23) 10° |
The results of this calculation are shown in Fig. 4, which 2
depicts how the enhancement varies versus the Péclet
numberP for various Rayleigh number® and the Prandtl <10 ¢ o
numbero=1. AP slope=1
It is found that the enhancemeatfollows two different
scaling regimes in the Péclet numbgr In the regime of 100 | swm_V o
o
TABLE I. The exponenty computed from the fit of the mean-
square displacemeiM,(t) to a power law~t” for several different . o
values of the Rayleigh numbdt and Lewis number. It is ap- 107 5 X " " 4
proximately unity in all instances. 10 10 10 ) 10 10 10
L 1072 1073 FIG. 4. The dimensionless enhancement in molecular diffusivity

A defined in Eq(22) vs the Péclet numbeP for various Rayleigh

R numbersR and the Prandtl number=1. Note that, when the Péclet
3074 11 11 number approaches zefthat is, when the advection becomes neg-
3500 1.0 1.1 ligible so that the transport equation, Efj0), is the diffusion equa-
4270 1.1 1.1 tion], the enhancement should approach zero as well. Thus, the data

points are expected to pass through the origs0,A=0).
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0.45 ; ; ; ; ; ; time scale r.~|u[*~O(10Y), the passive tracers “feel”

-3
04l 2 t::g_g & that they_are b_ei_ng trgn_sported _by a_constant vek_)city field,
and so will exhibit ballistic behavior withy=2. There is then
0.35¢ ] a crossover time in whicl decreases to unity, and this re-
gime is to be ignored too. Second, data from late times are

0.3r also ignored because of finite-size effects. The time at which
_,0.25} 1 finite-size effects become important is chosen as the time at
ﬂ which the exponeny, obtained from the logarithmic deriva-
0.2r T tive
0151 ] dlog[M(t)]
A=~ ==, (29)
0.1} 1 dlog(t)
0.05 1 deviates from approximately unity for a purely diffusive pro-

cess without advectiofihat is, whose diffusivity is chosen to
% oz o0z o6 08 1 12 12 16 Match that of effective diffusivity of the above process
&€

. . B. Normal diffusion versus anomalous diffusion
FIG. 5. The effective Lewis numbei*— L vs the reduced Ray-

leigh numbere. The solid line represents a power law with an  In this section, results are discussed from two other tests
exponent of 1/2. that show that the spreading process is indeed governed by
normal diffusion, and not anomalous diffusion. Diffusion is

On the other hand, in the regime of small Péclet number§,aid to be anomalous when the mean-square displacement is

P=<1C, the enhancement is found to scale with the PéclefOt Proportional to time, that is, whel(t)>t” with the
number as exponenty# 1. Anomalous diffusion has been observed in

the transport of passive tracers in the flow of a chain of
A o P2, (28)  corotating vortices in a rotating annull5,16, and in vari-
ous other geophysical turbulent flows arising from the pres-

(Note that there are insufficient data to conclude whether th€nce of Lévy trajectorie$29]. However, results from this
crossover between the two regimes is a continuous angection show no evidence of anomalous diffusion in transport
gradual one or a discontinuous and sharp pofiis square N spiral defect chaos for the range of Lewis numbers inves-
root dependence of the enhancement on the Péclet numbertigated. . o .
similar to the result obtained experimentall§] and calcu- First, if the passive tracer concentration is spreading by
lated theoretically5,6] in the spreading of passive tracers in Normal diffusion and so obeys E¢RO), then it can be ex-
time-independent convection flows comprising straight parPressed in the form of a Gaussian,
allel rolls. In this case, the enhancement can be attributed to 1 p( r2 )

: (30

the expulsion of the gradient of the passive tracer concentra- Tﬂ(r,t) ~ —ex :
tion from regions of closed stream linE8]. Near a separa- 4Lt

t
trix between two sets of closed stream lines, the only transapg g plot of the logarithm of the scaled passive tracer con-

port of the passive tracers from one roll to the next comes . ~ . 2
from the random walks of the passive tracers that lie within Centration logty(r ,0)] versus the scaled distanee/4t for

a. . ! o
thin layer of widthd of the roll boundarythe roll itself is of different timest will all collapse onto the same curve. This is

unit width in the dimensionless unit system adopted in thiéndee{j the case, as shown in Fig. 6, which shows the data at

papey. Thus, a fractiord of passive tracers contributes to an UMest=30, =40, andt=70 (triangles, squares, and circles,
increased/, in the effective Lewis number of the diffusion. respectively collapsmg_ontp the same straight line. How-
The widthd can be estimated from dimensional analy2i] ever, data from an _earllgr timte=5 (crossepdo not collapse

to bed?~ P~1. Combining these estimates leads immediatelyOnto the same straight Ime,_pr'esumably because of th? pres-
to Eq.(28). Thus, the above result suggests that the gradienince of transient effects. Similarly, data from a Iate_r time
expulsion mechanism near closed streamlines, althougﬁ100 (dotg do not collapsg (_)nto_the same straight line, be-
strictly derived in a time-independent convection flows com-cause of the presence Of f|n|te-3|ze effects. . .
prising straight parallel rolls, may be a universal mechanism Second, possible deviations from the Gaussian behavior

at sufficiently small Péclet numbers independent of the strucc-)f the passive tracer concentration can be checked by look-

ture of the underlying flow field. ing at the higher-order moments,

In Sec. lll C, the origin of these two distinct regimes is I r2m
discussed in terms of the dependence on the local wave num- f J X = (X)(t)[%(r, 6,)r dr d 6
ber of the convection rolls. But before concluding this sec- _-07-70
. ; ! Mq(t) = e (31)
tion, some details are presented in the way the least-squares &
fits were performed. First, data from early times are ignored o Jo ydr,0,)rdrdo

because of the presence of transients. One such transient ef-
fect could be that, at very early times prior to the turnoverFor normal diffusion, the higher-order moments scale like
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0.03 - - - (a) @=n/2 (b) ©=0
. k k
0.025 g =
Q 10 Vv
- A 8
0.02} el 2
- éc) —-15
= b 4
£0.015
FIG. 8. lllustrations showing the definition of the horizontal
ooil spreading orientatior®), at(a) ®=/2 corresponding to spreading
) in the direction of the local wave vectdsr, and (b) ®=0 corre-
sponding to spreading in the direction orthogonakto
0.005 K
g Rayleigh numbeR=3500, the Prandtl number=1, and the
o = Lewis number£=1072 The dashed lines show the corre-

sponding quantity for a purely diffusive process with diffu-
sivity chosen to match the former’s effective diffusivite-
cause of finite-size effects, the scaled higher-order moments
unfortunately have only a small range for which they are
constant in time. For example, &8, this range is only 5

for times t=30,t=40, andt=70 (triangles, squares, and circles, =t=20) Th_e _agre_zement of the two sets of Qata S.hOWS thf'ﬂ’
respectively collapse onto the same curve, suggesting the validitya_part from f|n|te-s_|ze effects, there are _no discernible devia-
of the Gaussian form in this time range. :!ons from Gaussian form for the passive tracer concentra-
ions.

2 Thus, both observations above suggest that the spreading
Mq(t) o t4%, (B2 of the passive tracer concentration is governed by normal

and the ratio of this higher-order moment scaled to thefiffusion.
second-order moment can be calculated to be

r/(2t"?)

FIG. 6. The scaled passive tracer concentrat%,t) vs the
scaled distance/r?/4t and scaled distance squaret 4t (insed.
The various symbols denote different values of the tim@he data

C. Wave-number dependence of the passive tracer transport

2/q
M =1x3---(q-1)=(q-1!! (33) In this section, the existence of two different scaling re-
Ma(t) gimes for the dimensionless enhancement in molecular dif-

which is a constant in time. In Fig. 7, this scaled ratio isfUSVity, namely at large Péclet numbers given by Ez¢)

plotted for =4, 6, and 8 as functions of time when the @nd at small Péclet numbers given by EB8), is investi-
gated in terms of the local wave-number dependence of the

passive tracer concentration. To make this discussion more

4 . N ! . ; :
A q=4 quantitative, first a quantity called the horizontal spreading
(E)‘ q=6 orientation®(x,y), is calculated at every location in the cell,
35 9=
o V. -k
o cog@) =~ (34)
I A A L T T, ] VK|
= OCo0Ga~an . . .
=" Coo o‘da. i The subscriptL denotes the horizontal coordinatesy) and
cost P o o] k(x,y) is the local wave vector at locatidm, y) in the plan-
S N . Dongooases 8 om - form [30]. If the passive tracer concentration spreads in the
s AA B O oo o direction of the local wave vectdt, then, as illustrated in
2 A Fig. 8(a), the gradien¥ | s will be orthogonal tdk, resulting
AAap in the local horizontal spreading orientation acquiring the
........ AADADANA DA . .
1.5¢ Aol bl bl et & value of ®=7/2. On the other hand, if the passive tracer
concentration spreads in the direction orthogonat téhen,
) , ) , , as illustrated in Fig. &), the local horizontal spreading ori-
0 10 20 30 40 50 entation will be®=0. For a particular passive tracer concen-

t tration, the horizontal spreading orientation can be computed

FIG. 7. The ratio of the scaled higher-order moments to theIocally at every point in the midplane of the convection cell

second-order momenit)(t)24/M(t), of the passive tracer concen- and then sorted into bins to create a histogram. In Fig. 9,
tration vs timet for the parameter®=3500,0=1, and £=1072, such a distribution of the horizontal spreading orientation,

and for a purely diffusive procegslashed lines From Eg.(33), P(®), is plotted for several values of the Lewis number rang-
this ratio is 1.73 whem=4, 2.47 wherg=6, and 3.20 whem=8.  ing from £=107 to £=10", the Rayleigh numberR

As q increases, the range of time for which the scaled moment stays 3500, and the Prandtl number1 at timet=50. Consider
constant in time decreases, because of finite-size effects. first the distribution for the relatively large Lewis number of
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FIG. 9. Distribution of horizontal spreading orientatioR&80)
for the Rayleigh numbeR=3500, t|‘3le Prandtl rllumbet:l,and the FIG. 10. Distribution of wave number®(k,®) for which
Lewis number ranging fron£ =10 to £=10"" spreading occurs orthogonally to the local wave vedtofsolid

lines) and in the direction ok (dashed lines for (a) large Lewis
umber£=10" and (b) small Lewis numberZ=1073 at the Ray-
eigh numberR=3500 and the Prandtl number=1.

L£=10" (denoted by crossgsThis distribution has a peak at
®=m/2. This suggests that the spreading of the passiv
tracer concentration has the highest probability to be in th
direction of the wave vectok [that is, as illustrated in the away from the mean wave number, correspond to the occur-
scenario of Fig. @)]. This is consistent with the gradient rence of defects such as spiral cores, target cores, disloca-
expulsion mechanism near closed streamlines described egfyns, etc. This suggests that the reason why gradient expul-
lier in Sec. Il A. However, at the smaller Lewis numbers of, sion ceases to be valid at large Péclet numbers is due to the
say,£=10"%, the distribution of the horizontal spreading ori- enhanced transport of the passive tracers orthogonal to the
entation is V|S|b|y different. The distribution now has a peak|oca| wave vectors by the defects in the pattern_ However,
at ®=0. In other words, the spreading of the passive tracethe presence of defects is not sufficient to overcome the gra-
concentration has the highest probability in the direction ordient expulsion mechanism at small Péclet numbers.
thogonal to the wave vectdr [that is, as illustrated in sce-
nario of Fig. &b)]. This shows that two different scaling IV. CONCLUSIONS
regimes for the dimensionless enhancement in molecular dif- In this paper, the spreading of a passive tracer concentra-
fusivity are associated with two different transport mecha-ion in a Rayleigh-Bénard convection flow exhibiting spiral
nisms. At large Lewis numbelsr equivalently, small Péclet defect chaos is studied. All previous studies have dealt with
numbers, the transport is along the direction of the wave time-independent or oscillatory flows. In the presence of ad-
vector k by the gradient expulsion mechanism. At small vection by spiral defect chaos, we find that the spreading
Lewis numbergor equivalently, large Péclet numbgrthe  continues to be characterized by normal diffusion. The en-
transport is orthogonal to the wave veckgrpresumably by hancement follows two regimes. When the Péclet number is
advection by the disordered flow. large (that is, when the molecular diffusivity of the tracer is
To determine why there is transport orthogonal to thesmal), the enhancement is proportional to the Péclet number.
wave vectok at small Lewis number&r equivalently, large This means that in the limit of large Péclet number, the ef-
Péclet numbejs the following calculation was performed. fective diffusivity is independent of the molecular diffusivity,
The local wave numbers that correspond to locations thaand is proportional to the strength of the advection velocity
exhibit spreading in the direction orthogonal to the wavefield. When the Péclet number is small, the enhancement is
vectork (that is, 0<® < 5 where =0.01 is a small con- proportional to the square root of the Péclet number. These
stan} were compared with those locations that exhibitresults are explained in terms of the dependence of the trans-
spreading in the direction of the wave vector(that is, port on the local wave numbers. It is found that tracers with
wm2-p<O®=<m/2). In Fig. 10, the distribution of wave small Péclet numbers follow the gradient expulsion mecha-
numbersP(k,®) for which the spreading occurs orthogo- nism described previously in time-independent flojgg
nally to k (solid lines is plotted together with the distribu- which predicts the square-root dependence. However, when
tion for which spreading is alonky (dashed linesfor a large  the Péclet number becomes large, defects in the flow field
Lewis number cas@Fig. 10a)] and a small Lewis number became important and lead to enhanced transport orthogonal
case[Fig. 10b)]. The key point to observe is that, in the to the local wave vectors.
small Lewis number case, there is a higher probability that
spreading occurs orthogonal to the wave ve¢t+ 0, solid ACKNOWLEDGMENTS
line) than along the wave vect¢® — /2, dashed lingfor This work was supported by the Engineering Research
wave number&~ 1.5 andk=2.5. These wave numbers, far Program of the Office of Basic Energy Sciences at the De-
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FIG. 12. Distribution of local advection orientations for various

FIG. 11. Snapshot of the passive tracer concentration ﬁelq_ewis numbers ranging frond=10"% to £=10"%.

Y(x,y=0) for £=1072 at timet=34 for two different values of the

filtering parametew=0.15(solid line) and «=0.02 (dashed ling . .
solution witha=0.02, we can see that the extent and reach of

he solution is largely unaffected in terms of the range f
overs. Thus, when computing, say, the second moment of
he passive tracer concentration fig¢kg. (18)], the results

partment of Energy, Grants No. DE-FG03-98ER14891 an
No. DE-FG02-98ER14892. We acknowledge the Caltecq
Center for Advanced Computing Research and the Nort

. ) ill be largely independent aof. This justifies that it is safe
Carolina Sup_ercomputlng Cen_ter. We thank Tony Leonar o use a filter parameter of as high@s0.15 when comput-
and Dan Meiron for useful discussions, as well as Jane;

; ) ing statistics of the passive scalar concentration field.
Scheel for her generous help with carrying out the computa- Second, a local advection orientatish(x,y), is defined
tions. ’ I ’

. Vi-u
APPENDIX: NUMERICAL DETAILS cog®d) = /4

, A2
IV olu (A2)

As mentioned in Sec. Il C, for small Lewis numbers
L<1, a difficulty associated with integrating the transportwith u the velocity field. If the local passive tracer concen-
equation, Eq(10), is that the spatial resolutioAx must be  tration is being advected by the local velocity and diffusion
small. A largerAx can be used by employing a simple filter- is not being sufficiently resolved, then the gradient of the
ing procedure developed by Fischer and Mullgi]. At the  former will be orthogonal to the local velocity, and conse-
end of each time step, a filter is applied on an element-byquently, ®=x/2. On the other hand, if the local passive
element basis to the passive tracer concentration #ielsh  tracer concentration exhibits diffusion, then it will change in
one dimension, the filtered field can be written as a direction perpendicular to the local velocity, yieldidy

=0. For small Lewis numbers where the effects of advection

F(yra) = ally-1(h) + (1 - a)y, (AL Gominate over the effects of molecular diffusion, the distri-
where the operatoFly_; first interpolatesys onto the mesh  bution of the local advection orientatioR(®P), over the mid-
points for a polynomial of degrebl—1 determined by the plane of the cell, should exhibit a strong peakdat /2.
mesh spacing and then interpolates the result back onto thehis peak will then broaden as the Lewis number is in-
mesh points for a polynomial for degrék In higher dimen-  creased, since the effects of diffusion cause the passive tracer
sions, the tensor product form of E@A1) is used. Typical concentration to spread out at all orientations relative to the
values ofa used were in the range 0.85x<0.2. This fil-  local velocity. The presence of this broadening in the distri-
tering procedure preserves interelement continuity and spedution of the local advection orientation is then an indication
tral accuracy. Using this filter and maintainidg=1/8, a  that molecular diffusion has been sufficiently resolved. The
stable Lewis number of up t6=10"2 could be attained. distributions P(®) for the various Lewis numbers ranging

To verify that the filter allows the diffusion to be suffi- from £=10*to £=10" are plotted in Fig. 12. The distribu-
ciently and accurately resolved at small Lewis numbers, twdion for £=1072 is distinctly different from that forl
sets of checks were performed. =103, providing evidence that the molecular diffusion at

First, the passive tracer concentration figlds inspected £=10"° has been stably resolved, that is, that the chosen grid
for various values ot In Fig. 11, a snapshot of the passive spacingAx is sufficiently small for the simulation to be ac-
tracer concentration fielgs for £=102 at a timet=34 is  curate. However, the relative similarity in the distributions
shown for two values of~=0.15(a value used throughout in for £=10"2 and£=10" suggests that diffusion for the latter
this paper and «=0.02. It can be seen that, although differ- case may not have been sufficiently resolved. Consequently,
ences exist between the peak values of the filter and ththe smallest allowed Lewis number is setxt 1073,
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