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To understand how spatiotemporal chaos may modify material transport, we use direct numerical simula-
tions of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the
transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the
transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity
follows two regimes. For large Péclet numberssthat is, small molecular diffusivities of the tracerd, we find that
the enhancement is proportional to the Péclet number. For small Péclet numbers, the enhancement is propor-
tional to the square root of the Péclet number. We explain the presence of these two regimes in terms of how
the local transport depends on the local wave numbers of the convection rolls. For large Péclet numbers, we
further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the
local wave vector but suppressed in the direction of the local wave vector.
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I. INTRODUCTION

This paper addresses the transport of passive neutrally
buoyant tracers in Rayleigh-Bénard convection exhibiting
spiral defect chaos—an example of spatiotemporal chaos that
is characterized by disorder in both space and timef1–3g. An
important characteristic of such spatially disordered flows is
that fluctuations in space play a significant role in their dy-
namics, resulting in advection of the passive tracers that is
dependent in a complex fashion on space and time. The
transport of passive tracers in such disordered flows is then
governed by this advection in addition to molecular diffu-
sion. The goal of this paper is to understand the net average
transport of passive tracers as a function of the two compet-
ing mechanisms of advection by spatiotemporal chaos and
molecular diffusion. Understanding material transport by
spatiotemporal chaos is a problem that is of considerable
importance in many branches of science and engineering.
For example, an improved understanding may allow one to
gain insight into heat and mass transport in atmospheric and
oceanic flows and also in chemical engineering processes
such as combustion.

Previous studies of the properties of passive transport in
convective flows have focused only on the steady and
weakly oscillatory regimes. For example, in two-dimensional
time-independent laminar Rayleigh-Bénard convection flow,
experiments have shown that the transport is effectively dif-
fusive in the long time limit, with an effective diffusivity that
is greater than the molecular diffusivity by a factor that

scales as the square root of the Péclet numberfdefined in Eq.
s14d to be the ratio of the strength of advection to diffusiong
f4g. This enhancement, in the large Péclet number limit, has
also been calculated theoretically by using the matched
asymptotic expansion methodf5,6g. In addition, higher-order
corrections to the diffusion process, for arbitrary Péclet num-
bers, have been calculated numerically using the homogeni-
zation method f7,8g. For nearly two-dimensional time-
periodic convection, experiments near the onset of the
oscillatory instability f9g have shown that the transport is
again effectively diffusive but with an effective diffusivity
that depends linearly on the local amplitude of the roll oscil-
lations f10g. This result has also been confirmed in theoreti-
cal work, which also identified the invariant structures of the
flow that acted as templates for the motion of the tracers
f11,12g. Passive tracer transport has also been studied in
other types of flows, such as capillary waves generated by
the Faraday instabilityf13,14g and a chain of corotating vor-
tices in a rotating annulusf15,16g.

In this paper, the above transport studies are extended to
flows that exhibit spatiotemporal chaos. It will be shown that
the transport is globally diffusive and is enhanced by the
spatiotemporal chaos. However, unlike the case of laminar
flows, the enhancement is found to follow two regimes. For
large Péclet numberssthat is, small molecular diffusivities of
the tracerd, the enhancement is proportional to the Péclet
number, whereas for small Péclet numbers, the enhancement
is proportional to the square root of the Péclet number. These
two regimes are then explained by analyzing how the local
transport depends on the local wave numbers of the convec-
tion rolls.

The remainder of this paper is organized as follows. In
Sec. II, the equations governing Rayleigh-Bénard convection
and the transport of passive tracers are defined. In addition,
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direct numerical simulations of these equations are dis-
cussed. In Sec. III, results from these simulations are pre-
sented. In Sec. IV, conclusions are presented.

II. EQUATIONS AND ALGORITHMS

A. Rayleigh-Bénard convection

In a typical Rayleigh-Bénard convection experiment, an
incompressible fluid layer is confined between two horizon-
tal plates, and is thermally driven far from equilibrium by
maintaining the bottom plate at a temperature that is higher
than that of the top plate. As the temperature difference is
increased, the fluid undergoes an instability to a state in
which there is motion driven by the buoyancy forces. When
the temperature difference between the plates is above but
near this convective threshold, a pattern comprising patches
of locally parallel convection rolls forms with roll diameters
that are close to the depth of the cell. When the temperature
difference is increased, the fluid undergoes other instabilities
that may result in the pattern developing an oscillatory or
chaotic time dependence. Finally, when the temperature dif-
ference is increased further and if the aspect ratioG is larger
than about 20 in boxes and 30 in cylinders, spiral defect
chaos appears. This state is a disordered collection of spirals
that rotate in both directions and coexist with dynamical de-
fects such as grain boundaries and dislocations. Figure 1

shows a numerically simulated instance of the spiral defect
chaos state in a cylindrical geometry. More generally, spiral
defect chaos is an example of a kind of widely observed
phenomenon called spatiotemporal chaos that exhibits disor-
der in space and chaos in time.

The evolution of the convecting fluid is governed to a
good approximation by the three-dimensional Boussinesq
equationsf17g. They are the combination of the incompress-
ible Navier-Stokes and heat equations, with the further as-
sumption that density variations are proportional to tempera-
ture variations and that this density variation appears only in
the buoyancy force. Written in a dimensionless form, they
are

s−1s]t + u · = dusx,y,z,td = − = p + =2u + RTẑ, s1d

s]t + u · = dTsx,y,z,td = =2T, s2d

= · u= 0. s3d

The fieldusx,y,z,td is the velocity field at pointsx,y,zd at
time t, while p andT are the pressure and temperature fields,
respectively. The variablesx andy denote the horizontal co-
ordinates, while the variablez denotes the vertical coordi-
nate, with the unit vectorẑ pointing in the direction opposite
to the gravitational acceleration. The spatial units are mea-
sured in units of the cell depthd, and time is measured in
units of the vertical thermal diffusion timed2/k, wherek is
the thermal diffusivity of the fluid. The parameterR is the
Rayleigh number, a dimensionless measure of the tempera-
ture differenceDT across the top and bottom plates,

R=
agd3

nk
DT, s4d

wherea is the thermal expansion coefficient,k is the thermal
diffusivity, andn is the viscous diffusivityskinematic viscos-
ityd of the fluid. In this paper, the reduced Rayleigh number
will also be frequently used,

e =
R− Rc

Rc
, s5d

whereRc<1708 is the critical Rayleigh number at the onset
of convection in an infinite domainf17g. The parameters is
the Prandtl number, defined to be the ratio of the fluid’s
thermal to viscous diffusivities,

s =
n

k
. s6d

The material walls are no-slip so that the velocity field
satisfies

u = 0 on all material walls. s7d

The temperature field is constant on the top and bottom
plates,

Tsx,y,z= 7
1
2,td = ± 1

2 . s8d

The lateral walls are assumed to be perfectly insulating, so
that

FIG. 1. Example of spiral defect chaos observed in a numerical
simulation described in Sec. II C with insulating and no-slip bound-
aries, and with a spatial resolution ofDx=1/8 and a temporal reso-
lution of Dt=10−3. The mid-plane temperature field is plotted at
time t=500 for parameterse=1.0, s=1, and in a cylindrical geom-
etry of aspect ratioG=30. Dark regions correspond to cold sinking
fluid, light regions to hot rising fluid. The spiral defect chaos plan-
form is characterized by a disordered collection of spirals rotating
in both directions and coexisting with dynamical defects such as
grain boundaries and dislocations.
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n̂ · = T = 0 on lateral walls, s9d

wheren̂ is the unit vector perpendicular to the lateral walls at
a given point. The pressure fieldp has no associated bound-
ary condition because it does not satisfy a dynamical equa-
tion.

The influence of the lateral walls on the dynamics is de-
termined by the dimensionless aspect ratioG, defined to be
the half-width-to-depth ratio of the cell if it is rectangular
and the radius-to-depth ratio if it is cylindrical.

B. Transport equation

The transport of passive neutrally buoyant tracers in a
flow can be described by the advection-diffusion equation.
Written in a dimensionless form, it is

s]t + u · = dcsx,y,z,td = L=2c. s10d

The scalar fieldcsx,y,z,td is the passive tracer concentration
at point sx,y,zd and timet. The velocity fieldu is obtained
by solving the Boussinesq equations, Eqs.s1d–s3d. The pa-
rameterL is the Lewis number, which is the dimensionless
ratio of the molecular diffusivityD of the tracers to the ther-
mal diffusivity k of the fluid,

L =
D

k
. s11d

sOther conventions of makingD dimensionless exist, such as
dividing it by the viscous diffusivity of the fluid, in which
case the dimensionless number becomes the Schmidt number
D /n.d In this paper, small Lewis numbers in the range 10−3

øLø10−1 will be considered. In comparison, the Lewis
numbers of passive tracers used in previous convection ex-
periments f4g in water at approximately 300 K, namely,
micrometer-sized latex spheressvinyl toluenet-butylstyrened
and methylene blue dye, areL=1.2310−5 and L=3.9
310−3, respectively.

The tracers are assumed to be passive, that is, their mo-
tions in the fluid do not modify the fluid’s velocity field. The
fluid is also assumed to have negligible Soret and Dufour
effects. The former refers to the additional passive tracer
concentration current driven by gradients of the temperature
field, whereas the latter refers to the additional heat current
driven by gradients of the passive tracer concentration. In
addition, the lateral walls are assumed to be impermeable to
the tracers, so that

n̂ · = c = 0 on lateral walls, s12d

wheren̂ is the unit vector perpendicular to the lateral walls at
a given point.

Equations10d is also commonly written in the literature in
an alternate but entirely equivalent form. By dividing it
throughout by the product of a characteristic velocity scale
iui and a characteristic length scale, Eq.s10d becomes

s]t̃ + ũ · = dcsx,y,z,td =
1

P=2c, s13d

with t̃ the rescaled time,ũ the rescaled velocity field, andP
the Péclet number, defined to be the dimensionless ratio of

the relative importance of the advection of the tracers to their
molecular diffusion,

P =
iui
L . s14d

fNote that the numerator in Eq.s14d contains a characteristic
length scale—the depth of the cell—which is unity and is
thus omitted.g

Finally, it should also be noted that instead of studying the
passive tracer concentration fieldc in the space coordinates
defined in the laboratory framesthe Eulerian approachd, one
could study the trajectories of each passive tracer individu-
ally sthe Lagrangian approachd by integrating, for each pas-
sive tracer,

dxstd
dt

= u„xstd,t… + hstd, s15d

wherexstd is the position of the tracerfinitially at xs0dg, u is
the Eulerian velocity field at spacexstd and timet, andhstd is
a Langevin noise introduced to represent molecular diffu-
sion. However, this approach is not pursued here because of
the difficulties associated with integrating Eq.s15d. In fact,
even if the velocity fieldu can be explicitly determined and
has a very simple form, the tracer trajectoriesx can have
very complicated dynamicsf18g.

C. Direct numerical simulations

We use a parallel spectral element scheme to integrate the
Boussinesq equations, Eqs.s1d–s3d, and the transport equa-
tion, Eq. s10d. The scheme is second-order-accurate in time
and is designed for rectangular, cylindrical, as well as more
complex geometries with arbitrary lateral boundary condi-
tions. Details of this scheme are available elsewheref19g.
For applications of this scheme to related problems in
Rayleigh-Bénard convection, see Refs.f20–24g.

For small Lewis numbersL!1, one well-known diffi-
culty f25,26g associated with integrating Eq.s10d is that the
spatial resolutionDx has to be very small. This scale is set by
the smallest scale in the tracer concentration field, such as
the thickness of the interface where the tracer is initially zero
on one side and unity on the other. The interface is then
stretched by a strain rateS,]u/]x,iui, and its thickness is
proportional tosL /Sd1/2, that is,

Dx , S L
iui

D1/2

= P−1/2. s16d

For the spiral defect chaos states considered in this paper, the
velocity magnitude,iui, is about 10. Thus, a simulation at
the Lewis number of, say,L=10−3 will require Dx,10−2 in
order to satisfy Eq.s16d. However, current computational
resources dictate thatDx be about*10−1, and in fact, for the
results quoted in this paper,Dx=1/8. This problem is over-
come by using a filtering procedure developed by Fischer
and Mullenf27g, and is described in Appendix I. Using this
filter and maintainingDx=1/8, aLewis number as small as
L=10−3 can be attained in a stable simulation. The accuracy
of using the filter is also discussed in the Appendix.
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III. RESULTS

The transport equation, Eq.s10d, was integrated concur-
rently with the Boussinesq equations, Eqs.s1d–s3d, for the
following parameters: the Rayleigh number varied from the
onset of spiral defect chaos atR<3000 to fully developed
spiral defect chaos atR<4000, the Prandtl numbers=1, and
the Lewis number ranging fromL=10−3 to L=10−1. The
direct numerical simulations have been performed in cylin-
drical three-dimensional cells of various aspect ratios. In this
paper, data for an aspect ratio ofG=30 will be reported. The
initial condition used for the passive tracer concentration
field is a localized concentration at the center of the cell,

csx,y,z,t = 0d = expF−
x2 + y2 + z2

6D2 G , s17d

with D=1/4 asmall constant to ensure that the passive tracer
concentration is initially localized. At timet=0, the tempera-
ture, velocity, and pressure fields correspond to an
asymptotic state of spiral defect chaos, that is, one that has
been evolved from random thermal perturbations up to a
time of OsG2d. In this paper, the focus will be on cells of
large aspect ratio,Gù20. For these aspect ratios, thez de-
pendence of the passive tracer concentration field was found
to be essentially constant. As such, thez dependence will be
dropped in subsequent discussions and the passive tracer
concentrationcsx,y,td will be considered as a function of
two-dimensional horizontal space and time.

In Fig. 2, the evolution of the passive tracer concentration

field csx,y,td at the midplanez=0 for the parametersR
=3500,s=1, andL=10−2 is shown for various timest. The
passive tracer concentration spreads outward with time in a
nonuniform and nonaxisymmetric way. In Sec. III A, this
spreading is quantified globally by studying the mean-square
displacement of the passive tracer concentration field. In Sec.
III B, this spreading is shown to be characterized by normal
diffusion. In Sec. III C, the local dependence of the spread-
ing on the local wave number is discussed.

A. Statistics of moments of passive tracer concentration

The spreading of the passive tracers can be quantified by
its mean-square displacementM2std, or the second moment,
of the passive tracer concentration field,

M2std =

E
0

G E
0

2p

ux − kxlstdu2csr,u,tdr dr du

E
0

G E
0

2p

csr,u,tdr dr du

. s18d

Here,x=sr ,ud is the polar coordinate with origin at the cen-
ter of the cell. In practice,M2std is computed as the average
over different instancesstypically three to fived of c obtained
from different random initial conditions of spiral defect
chaos, that is, the velocity, temperature, and pressure fields
used att=0 are different instances of fully developed spiral
defect chaos. The quantitykxlstd is the instantaneous center
of mass of the tracer distribution,

kxlstd =

E
0

G E
0

2p

xcsr,u,tdr dr du

E
0

G E
0

2p

csr,u,tdr dr du

. s19d

In Fig. 3, the mean-square displacementM2std is plotted
for several different values of the Rayleigh numberR and the
Lewis numbersL=10−3 andL=10−2. It is found that, in all
cases, the mean-square displacementM2std is directly pro-
portional to the timet to a very good approximation. Least-
squares fits ofM2std to power laws,tg yield exponentsg of
approximately unity, as shown in Table I.

This implies that the spreading of the passive tracer con-
centration field can be described by a normal diffusive pro-
cess. In other words, the averaged passive tracer concentra-

tion, c̄sr ,td, evolves according to the one-dimensional
normal diffusion equation,

]tc̃sr,td = L*]rr c̃ s20d

with L* an effective Lewis number that can be extracted
from the mean-square displacement as

M2std = 4L* t. s21d

Several values of the effective Lewis number for various
values of the parameters are tabulated in Table II.

The quantity

FIG. 2. Evolution of the passive tracer concentration field
csx,y,z=0,td for various timest, obtained by numerically solving
Eq. s10d. The Rayleigh numberR=3500, the Prandtl numbers=1,
and the Lewis numberL=10−2, and the cylindrical cell has the
aspect ratioG=30. The initial condition forc at t=0 is given by Eq.
s17d. The vertical bars depict the intensity scale of the concentration
fields.
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D ;
L* − L

L s22d

is then a dimensionless measure of the enhancement in the
molecular diffusivity of the passive tracer concentration
brought upon by the advection of the spiral defect chaotic
flow. The goal of this paper can then be phrased as the cal-
culation of how this enhancement varies as a function of
both the properties of the advecting fluidsthe Rayleigh num-
berR and Prandtl numbersd and the property of the passive
tracer concentrationfits Lewis number, or equivalently, the
Péclet number,P, cf. Eq. s14dg,

D = DsR,s,Pd. s23d

The results of this calculation are shown in Fig. 4, which
depicts how the enhancementD varies versus the Péclet
numberP for various Rayleigh numbersR and the Prandtl
numbers=1.

It is found that the enhancementD follows two different
scaling regimes in the Péclet numberP. In the regime of

large Péclet numbers,P*102, the enhancement is found to
scale linearly with the Péclet number,

D ~ P. s24d

This implies that the effective Lewis number also scales lin-
early with the velocity magnitude of the flow, and is inde-
pendent of the Lewis numberL,

L* − L ~ iui. s25d

fEquations25d is easily obtained by dividing Eq.s24d by the
Lewis numberL.g In addition, it is of interest to see how the
effective Lewis number relates to the reduced Rayleigh num-
ber. This relation is plotted in Fig. 5, and it exhibits a square-
root dependence,

L * − L ~ e1/2. s26d

Thus, Eqs.s25d ands26d together suggest that the character-
istic velocity scale of spiral defect chaos scales with the re-
duced Rayleigh number as

iui ~ e1/2. s27d

TABLE I. The exponentg computed from the fit of the mean-
square displacementM2std to a power law,tg for several different
values of the Rayleigh numberR and Lewis numberL. It is ap-
proximately unity in all instances.

L 10−2 10−3

R

3074 1.1 1.1

3500 1.0 1.1

4270 1.1 1.1

TABLE II. The effective Lewis numberL* computed from Eq.
s21d for various values of the Rayleigh numberR and the Lewis
numberL.

L 10−3 10−2 10−1

R

3074 0.29 0.29 0.38

3500 0.35 0.35 0.50

4270 0.42 0.41 0.53

FIG. 4. The dimensionless enhancement in molecular diffusivity
D defined in Eq.s22d vs the Péclet numberP for various Rayleigh
numbersR and the Prandtl numbers=1. Note that, when the Péclet
number approaches zerofthat is, when the advection becomes neg-
ligible so that the transport equation, Eq.s10d, is the diffusion equa-
tiong, the enhancement should approach zero as well. Thus, the data
points are expected to pass through the originsP=0,D=0d.

FIG. 3. The mean-square displacementM2std of the passive
tracer concentration field for two different Rayleigh numbersR
=3074stopd and 3500sbottomd. The Prandtl number iss=1 in both
cases. The triangle and circle symbols denote data for the Lewis
numberL=10−3 andL=10−2, respectively. The dashed lines have
slopes of unity. The exponents obtained from power-law fits of the
data are given in Table I.
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On the other hand, in the regime of small Péclet numbers,
P&102, the enhancement is found to scale with the Péclet
number as

D ~ P1/2. s28d

sNote that there are insufficient data to conclude whether the
crossover between the two regimes is a continuous and
gradual one or a discontinuous and sharp one.d This square
root dependence of the enhancement on the Péclet number is
similar to the result obtained experimentallyf4g and calcu-
lated theoreticallyf5,6g in the spreading of passive tracers in
time-independent convection flows comprising straight par-
allel rolls. In this case, the enhancement can be attributed to
the expulsion of the gradient of the passive tracer concentra-
tion from regions of closed stream linesf6g. Near a separa-
trix between two sets of closed stream lines, the only trans-
port of the passive tracers from one roll to the next comes
from the random walks of the passive tracers that lie within a
thin layer of widthd of the roll boundarysthe roll itself is of
unit width in the dimensionless unit system adopted in this
paperd. Thus, a fractiond of passive tracers contributes to an
increase,dL, in the effective Lewis number of the diffusion.
The widthd can be estimated from dimensional analysisf28g
to bed2,P−1. Combining these estimates leads immediately
to Eq. s28d. Thus, the above result suggests that the gradient
expulsion mechanism near closed streamlines, although
strictly derived in a time-independent convection flows com-
prising straight parallel rolls, may be a universal mechanism
at sufficiently small Péclet numbers independent of the struc-
ture of the underlying flow field.

In Sec. III C, the origin of these two distinct regimes is
discussed in terms of the dependence on the local wave num-
ber of the convection rolls. But before concluding this sec-
tion, some details are presented in the way the least-squares
fits were performed. First, data from early times are ignored
because of the presence of transients. One such transient ef-
fect could be that, at very early times prior to the turnover

time scaletc,iui−1,Os10−1d, the passive tracers “feel”
that they are being transported by a constant velocity field,
and so will exhibit ballistic behavior withg=2. There is then
a crossover time in whichg decreases to unity, and this re-
gime is to be ignored too. Second, data from late times are
also ignored because of finite-size effects. The time at which
finite-size effects become important is chosen as the time at
which the exponentg, obtained from the logarithmic deriva-
tive

gstd =
d logfM2stdg

d logstd
, s29d

deviates from approximately unity for a purely diffusive pro-
cess without advectionsthat is, whose diffusivity is chosen to
match that of effective diffusivity of the above processd.

B. Normal diffusion versus anomalous diffusion

In this section, results are discussed from two other tests
that show that the spreading process is indeed governed by
normal diffusion, and not anomalous diffusion. Diffusion is
said to be anomalous when the mean-square displacement is
not proportional to time, that is, whenM2std~ tg with the
exponentgÞ1. Anomalous diffusion has been observed in
the transport of passive tracers in the flow of a chain of
corotating vortices in a rotating annulusf15,16g, and in vari-
ous other geophysical turbulent flows arising from the pres-
ence of Lévy trajectoriesf29g. However, results from this
section show no evidence of anomalous diffusion in transport
in spiral defect chaos for the range of Lewis numbers inves-
tigated.

First, if the passive tracer concentration is spreading by
normal diffusion and so obeys Eq.s20d, then it can be ex-
pressed in the form of a Gaussian,

c̃sr,td ,
1

t
expS r2

4L* t
D , s30d

and a plot of the logarithm of the scaled passive tracer con-

centration logftc̃sr ,tdg versus the scaled distanceÎr2/4t for
different timest will all collapse onto the same curve. This is
indeed the case, as shown in Fig. 6, which shows the data at
times t=30, t=40, andt=70 striangles, squares, and circles,
respectivelyd collapsing onto the same straight line. How-
ever, data from an earlier timet=5 scrossesd do not collapse
onto the same straight line, presumably because of the pres-
ence of transient effects. Similarly, data from a later timet
=100 sdotsd do not collapse onto the same straight line, be-
cause of the presence of finite-size effects.

Second, possible deviations from the Gaussian behavior
of the passive tracer concentration can be checked by look-
ing at the higher-order moments,

Mqstd =

E
0

G E
0

2p

ux − kxlstduqcsr,u,tdr dr du

E
0

G E
0

2p

csr,u,tdr dr du

. s31d

For normal diffusion, the higher-order moments scale like

FIG. 5. The effective Lewis numberL*−L vs the reduced Ray-
leigh numbere. The solid line represents a power law with an
exponent of 1/2.
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Mqstd ~ tq/2, s32d

and the ratio of this higher-order moment scaled to the
second-order moment can be calculated to be

Mqstd2/q

M2std
= 1 3 3¯ sq − 1d = sq − 1d ! ! s33d

which is a constant in time. In Fig. 7, this scaled ratio is
plotted for q=4, 6, and 8 as functions of time when the

Rayleigh numberR=3500, the Prandtl numbers=1, and the
Lewis numberL=10−2. The dashed lines show the corre-
sponding quantity for a purely diffusive process with diffu-
sivity chosen to match the former’s effective diffusivity.sBe-
cause of finite-size effects, the scaled higher-order moments
unfortunately have only a small range for which they are
constant in time. For example, atq=8, this range is only 5
& t&20.d The agreement of the two sets of data shows that,
apart from finite-size effects, there are no discernible devia-
tions from Gaussian form for the passive tracer concentra-
tions.

Thus, both observations above suggest that the spreading
of the passive tracer concentration is governed by normal
diffusion.

C. Wave-number dependence of the passive tracer transport

In this section, the existence of two different scaling re-
gimes for the dimensionless enhancement in molecular dif-
fusivity, namely at large Péclet numbers given by Eq.s24d
and at small Péclet numbers given by Eq.s28d, is investi-
gated in terms of the local wave-number dependence of the
passive tracer concentration. To make this discussion more
quantitative, first a quantity called the horizontal spreading
orientation,Qsx,yd, is calculated at every location in the cell,

cossQd =
='c · k

u='cuuk u
. s34d

The subscript' denotes the horizontal coordinatessx,yd and
ksx,yd is the local wave vector at locationsx,yd in the plan-
form f30g. If the passive tracer concentration spreads in the
direction of the local wave vectork, then, as illustrated in
Fig. 8sad, the gradient='c will be orthogonal tok, resulting
in the local horizontal spreading orientation acquiring the
value of Q=p /2. On the other hand, if the passive tracer
concentration spreads in the direction orthogonal tok, then,
as illustrated in Fig. 8sbd, the local horizontal spreading ori-
entation will beQ=0. For a particular passive tracer concen-
tration, the horizontal spreading orientation can be computed
locally at every point in the midplane of the convection cell
and then sorted into bins to create a histogram. In Fig. 9,
such a distribution of the horizontal spreading orientation,
PsQd, is plotted for several values of the Lewis number rang-
ing from L=10−3 to L=10−1, the Rayleigh numberR
=3500, and the Prandtl numbers=1 at timet=50. Consider
first the distribution for the relatively large Lewis number of

FIG. 6. The scaled passive tracer concentrationtc̃sr ,td vs the
scaled distanceÎr2/4t and scaled distance squaredr2/4t sinsetd.
The various symbols denote different values of the timest. The data
for times t=30, t=40, and t=70 striangles, squares, and circles,
respectivelyd collapse onto the same curve, suggesting the validity
of the Gaussian form in this time range.

FIG. 7. The ratio of the scaled higher-order moments to the
second-order moment,Mqstd2/q/M2std, of the passive tracer concen-
tration vs timet for the parametersR=3500,s=1, andL=10−2,
and for a purely diffusive processsdashed linesd. From Eq.s33d,
this ratio is 1.73 whenq=4, 2.47 whenq=6, and 3.20 whenq=8.
As q increases, the range of time for which the scaled moment stays
constant in time decreases, because of finite-size effects.

FIG. 8. Illustrations showing the definition of the horizontal
spreading orientation,Q, at sad Q=p /2 corresponding to spreading
in the direction of the local wave vectork, and sbd Q=0 corre-
sponding to spreading in the direction orthogonal tok.
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L=10−1 sdenoted by crossesd. This distribution has a peak at
Q=p /2. This suggests that the spreading of the passive
tracer concentration has the highest probability to be in the
direction of the wave vectork fthat is, as illustrated in the
scenario of Fig. 8sadg. This is consistent with the gradient
expulsion mechanism near closed streamlines described ear-
lier in Sec. III A. However, at the smaller Lewis numbers of,
say,L=10−3, the distribution of the horizontal spreading ori-
entation is visibly different. The distribution now has a peak
at Q=0. In other words, the spreading of the passive tracer
concentration has the highest probability in the direction or-
thogonal to the wave vectork fthat is, as illustrated in sce-
nario of Fig. 8sbdg. This shows that two different scaling
regimes for the dimensionless enhancement in molecular dif-
fusivity are associated with two different transport mecha-
nisms. At large Lewis numberssor equivalently, small Péclet
numbersd, the transport is along the direction of the wave
vector k by the gradient expulsion mechanism. At small
Lewis numberssor equivalently, large Péclet numbersd, the
transport is orthogonal to the wave vectork, presumably by
advection by the disordered flow.

To determine why there is transport orthogonal to the
wave vectork at small Lewis numberssor equivalently, large
Péclet numbersd, the following calculation was performed.
The local wave numbers that correspond to locations that
exhibit spreading in the direction orthogonal to the wave
vector k sthat is, 0øQøh whereh=0.01 is a small con-
stantd were compared with those locations that exhibit
spreading in the direction of the wave vectork sthat is,
p /2−høQøp /2d. In Fig. 10, the distribution of wave
numbersPsk,Qd for which the spreading occurs orthogo-
nally to k ssolid linesd is plotted together with the distribu-
tion for which spreading is alongk sdashed linesd for a large
Lewis number casefFig. 10sadg and a small Lewis number
casefFig. 10sbdg. The key point to observe is that, in the
small Lewis number case, there is a higher probability that
spreading occurs orthogonal to the wave vectorsQ→0, solid
lined than along the wave vectorsQ→p /2, dashed lined for
wave numbersk<1.5 andk<2.5. These wave numbers, far

away from the mean wave number, correspond to the occur-
rence of defects such as spiral cores, target cores, disloca-
tions, etc. This suggests that the reason why gradient expul-
sion ceases to be valid at large Péclet numbers is due to the
enhanced transport of the passive tracers orthogonal to the
local wave vectors by the defects in the pattern. However,
the presence of defects is not sufficient to overcome the gra-
dient expulsion mechanism at small Péclet numbers.

IV. CONCLUSIONS

In this paper, the spreading of a passive tracer concentra-
tion in a Rayleigh-Bénard convection flow exhibiting spiral
defect chaos is studied. All previous studies have dealt with
time-independent or oscillatory flows. In the presence of ad-
vection by spiral defect chaos, we find that the spreading
continues to be characterized by normal diffusion. The en-
hancement follows two regimes. When the Péclet number is
large sthat is, when the molecular diffusivity of the tracer is
smalld, the enhancement is proportional to the Péclet number.
This means that in the limit of large Péclet number, the ef-
fective diffusivity is independent of the molecular diffusivity,
and is proportional to the strength of the advection velocity
field. When the Péclet number is small, the enhancement is
proportional to the square root of the Péclet number. These
results are explained in terms of the dependence of the trans-
port on the local wave numbers. It is found that tracers with
small Péclet numbers follow the gradient expulsion mecha-
nism described previously in time-independent flowsf6g
which predicts the square-root dependence. However, when
the Péclet number becomes large, defects in the flow field
became important and lead to enhanced transport orthogonal
to the local wave vectors.
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APPENDIX: NUMERICAL DETAILS

As mentioned in Sec. II C, for small Lewis numbers
L!1, a difficulty associated with integrating the transport
equation, Eq.s10d, is that the spatial resolutionDx must be
small. A largerDx can be used by employing a simple filter-
ing procedure developed by Fischer and Mullenf27g. At the
end of each time step, a filter is applied on an element-by-
element basis to the passive tracer concentration fieldc. In
one dimension, the filtered field can be written as

Fsc;ad = aPN−1scd + s1 − adc, sA1d

where the operatorPN−1 first interpolatesc onto the mesh
points for a polynomial of degreeN−1 determined by the
mesh spacing and then interpolates the result back onto the
mesh points for a polynomial for degreeN. In higher dimen-
sions, the tensor product form of Eq.sA1d is used. Typical
values ofa used were in the range 0.05øaø0.2. This fil-
tering procedure preserves interelement continuity and spec-
tral accuracy. Using this filter and maintainingDx=1/8, a
stable Lewis number of up toL=10−3 could be attained.

To verify that the filter allows the diffusion to be suffi-
ciently and accurately resolved at small Lewis numbers, two
sets of checks were performed.

First, the passive tracer concentration fieldc is inspected
for various values ofa. In Fig. 11, a snapshot of the passive
tracer concentration fieldc for L=10−2 at a time t=34 is
shown for two values ofa=0.15sa value used throughout in
this paperd anda=0.02. It can be seen that, although differ-
ences exist between the peak values of the filter and the

solution witha=0.02, we can see that the extent and reach of
the solution is largely unaffected in terms of the range ofx it
covers. Thus, when computing, say, the second moment of
the passive tracer concentration fieldfEq. s18dg, the results
will be largely independent ofa. This justifies that it is safe
to use a filter parameter of as high asa=0.15 when comput-
ing statistics of the passive scalar concentration field.

Second, a local advection orientation,Fsx,yd, is defined,

cossFd =
=c · u

u = cuuuu
, sA2d

with u the velocity field. If the local passive tracer concen-
tration is being advected by the local velocity and diffusion
is not being sufficiently resolved, then the gradient of the
former will be orthogonal to the local velocity, and conse-
quently, F=p /2. On the other hand, if the local passive
tracer concentration exhibits diffusion, then it will change in
a direction perpendicular to the local velocity, yieldingF
=0. For small Lewis numbers where the effects of advection
dominate over the effects of molecular diffusion, the distri-
bution of the local advection orientation,PsFd, over the mid-
plane of the cell, should exhibit a strong peak atF=p /2.
This peak will then broaden as the Lewis number is in-
creased, since the effects of diffusion cause the passive tracer
concentration to spread out at all orientations relative to the
local velocity. The presence of this broadening in the distri-
bution of the local advection orientation is then an indication
that molecular diffusion has been sufficiently resolved. The
distributions PsFd for the various Lewis numbers ranging
from L=10−4 to L=10−1 are plotted in Fig. 12. The distribu-
tion for L=10−2 is distinctly different from that forL
=10−3, providing evidence that the molecular diffusion at
L=10−3 has been stably resolved, that is, that the chosen grid
spacingDx is sufficiently small for the simulation to be ac-
curate. However, the relative similarity in the distributions
for L=10−3 andL=10−4 suggests that diffusion for the latter
case may not have been sufficiently resolved. Consequently,
the smallest allowed Lewis number is set atL=10−3.

FIG. 11. Snapshot of the passive tracer concentration field
csx,y=0d for L=10−2 at time t=34 for two different values of the
filtering parametera=0.15 ssolid lined anda=0.02 sdashed lined.

FIG. 12. Distribution of local advection orientations for various
Lewis numbers ranging fromL=10−4 to L=10−1.
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